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1 Introduction: gradable adjectives
Gradable adjectives are generally assumed to have a denotation of this sort:

(1) JtallK = {x|height(x) ≥ θ}
“John is tall” ≈ height(John) ≥ θ

θ is vague: there is no intuitively accessible or experimentally visible limit between tall and
non-tall people.

θ may be thought to be a free variable that is supplied (though not fully specified) by context,
or to depend in a systematic way on a comparison class. In a general way, the question of how
θ is determined is still open.

2 Game-theoretic pragmatics and gradable adjectives
There is a recent literature that attempts to link gradable adjectives to game-theoretic / prob-
abilistic models of pragmatics:

1. Lassiter and Goodman (2017) use the RSA model to show that, even if nobody knows
anything about θ a priori, gradable adjectives may still be used in an informative way by
Bayesian reasoners.

2. Qing and Franke (2014) propose that speakers might actually derive expectations about
θ from considerations of optimal usage: speakers expect θ to be used so as to maximize a
certain function, the expected utility.

The idea is to derive non-trivial semantics “for free” from a general-purpose model.
In both cases there is and assumption that there is a prior distribution on the quantity being

discussed in the common ground.

3 Utility and expected utility
We’re going to take the utility of Lassiter and Goodman (2017), apply to it the methodology
of Qing and Franke (2014), and derive from that a very clear version of the sort of things these
models predict.

1. Utility is a numerical model of a trade-off between being informativeness and cost. What’s
important to us is that it quantifies informativeness.

2. We assume there are two messages, pos which denotes [θ,+∞) and has cost c (for instance,
“John is tall”), and ε (the empty message) which provides no information and has cost 0.
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3. For a given situation, for instance a person being of height h0, the utility function maps
each message to a numerical value. We write:

(2) a. U(ε|H = h0; θ): utility of saying ε for a given value of θ and for height h0.
b. U(pos|H = h0; θ): utility of saying pos for a given value of θ and for height h0.

Once we have a utility, we may define an expected utility: this quantifies how much utility
speakers achieve on average:

(3) EU(θ) = EH [U(u∗|H; θ)]

We assume speakers are as informative as they can: they say pos whenever it is true.

4 Result
It turns out there is an optimal value for θ, which we write as θ∗ such that expected utility is
maximal. This value can be expressed in terms of Φ(θ), the prior probability of not being tall:

(4) Φ(θ∗) = 1− exp(−1− c)

Thus, optimally, gradable adjectives should denote a fixed share of the comparison
class, specifically exp(−1− c).

Note that if c ≈ 0, then 1− Φ(θ∗) ≈ 1
e ≈ 0.37. Finally:

(5) Theorem: the optimal denotation of “tall” is such that 37% of the people are tall.

5 Extension
What if we also have the following messages?

JposK[x] = Hx ≥ θp
JnegK[x] = Hx ≤ θn

J¬posK[x] = Hx < θp

J¬negK[x] = Hx > θn

If pos is “tall”, neg could be “short”, and ¬pos “not tall”.
We derive a similar result:

(6) Second theorem: optimally, the bottom 22% of the distribution are short, the top 41%
are tall, the in-between people may be referred to as “not tall”. “not short” isn’t used.

6 Discussion
• The idea that gradable adjectives denote a certain fixed share of the population is already

discussed by Schöller and Franke (2015), who call it CFK semantics. It seems to give us
vagueness (through underspecfication of the distribution) and cognitive plausibility (there
isn’t an arbitrary threshold for every comparison class, context-dependency is kept in
check).

• The actual numbers are plausible enough relative to intuitions about who is tall. Schöller
and Franke (2015) ask subjects for intuitions on “many” and “few” and find thresholds of
0.69 (against 0.59 for us) and 0.15 (against 0.22 for us) respectively.
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• However, existing linguistic work on gradable adjective usage doesn’t really support these
sort of probabilistic approaches:

a. When you know the distribution perfectly, there appears to be an element of “standing
out” (Kennedy 2007) which isn’t affected by the distribution, and the vagueness
doesn’t go away.

b. Though Qing and Franke (2014) claim it does, it’s not clear that the difference
between “absolute” gradable adjectives like “full” and “relative” ones like “tall” really
follows from these semantics.

• What this work shows is that utility-based models are actually interpretable in qualitative
ways if one takes care to analyse them in full.
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A Details of the model
a. Possible worlds correspond to a range of values for a real variable H (for instance, it could

be John’s height).

b. There is a prior distribution on H, with density φ and probability function Φ, which is
part of the common ground (for instance the distribution of men of John’s age’s height in
John’s country).

c. There are two messages to describe H, pos which denotes [θ,+∞) and has cost c (for
instance, “John is tall”), and ε (the empty message) which provides no information and
has cost 0.

d. The utility of using a message to describe an instance of H, knowing H and θ, is the log
of the posterior density an hypothetical listener would assign to the actual value of H
(informativeness term), minus the cost of the message (cost term).

(7) U(ε|H = h0; θ) = log φ(h0|H ∈ JεK; θ) = log φ(h0)

U(pos|H = h0; θ) = log φ(h0|H ∈ JposK; θ)− c =


−∞ if h0 < θ,

log φ(h0)
1− Φ(θ)︸ ︷︷ ︸

informativeness

−c︸︷︷︸
cost

if h0 ≥ θ.

B Derivations
Speakers maximize utility by saying pos if it is true, ε otherwise.1

1In theory it could be the case that if c is too high and θ is too low, it isn’t always worth it to say pos. We
will ignore this case.
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(8) EU(θ) = Eφ[U(u∗|H; θ)]

=
∫ θ

−∞
φ(h)U(ε|H = h; θ)dh︸ ︷︷ ︸
utility from saying ε

+
∫ +∞

θ
φ(h)U(pos|H = h; θ)dh︸ ︷︷ ︸
utility from saying pos

.

The expected utility turns out to have a very simple form:

(9) EU(θ) =
∫ θ

−∞
φ(h) log φ(h)dh+

∫ +∞

θ
φ(h)(log φ(h)

1− Φ(θ) − c)dh

=
∫ +∞

−∞
φ(h) log φ(h)dh− (1− Φ(θ))(log(1− Φ(θ)) + c)

= −H(φ)︸ ︷︷ ︸
constant term

−(1− Φ(θ))(log(1− Φ(θ)) + c)︸ ︷︷ ︸
variable term (f(Φ(θ)))

,

The first term, H(φ), is the entropy of the distribution and doesn’t depend on θ. The second
term is a simple function of Φ(θ) (cf. Figure 1). Note that Φ(θ) is the share of people who are
not tall.
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Figure 1: f(Φ(θ)) as a function of Φ(θ) for c = 0 and c = 0.1.

As can be seen on Figure 1, there is an optimal value for Φ(θ) and therefore θ, which we
may in fact calculate (through derivatives):

(10) θ∗ = Φ−1(1− exp(−1− c))

Exercise: verify2 that if we introduce the other messages to the model, and we assume that
neg has slightly higher cost than pos, then the optimal system is such that:

(11) Φ(θ∗p) = 1
1 + exp(cost(¬pos)− cost(pos)− e−1−cost(neg)+cost(¬pos))

(
≈ 1

1 + e− 1
e

≈ 0.59
)

Φ(θ∗n) = exp(−1− cost(neg) + cost(¬pos))Φ(θ∗p)
(
≈ 1

e(1 + e− 1
e )
≈ 0.22

)

2If it turns out to not be true, do tell me.
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