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1 Introduction: audio-to-score alignment

Given a music score and a recording of the same piece, a common problem consists in trying
to find a mapping between the score’s beats and the recording’s timestamps. This question
is known as audio-to-score alignment. The difficulty of it lies in the fact that even classical
pieces with detailed scores are always performed in slightly different manners; this is due to
the performers’ effects as well as sometimes their mistakes. Thus, two perfomances of the same
piece may have very different local tempi and temporal deviations from one another.

In addition to its inherent applicative potential (for instance as a teaching aid in music
schools), audio-to-score alignment can be used as a frontend for a number of common problems
in music processing, including query-by-humming, where we seek to identify a piece hummed
or played by a human [!], automatic transcription [2], audio editing [3], automatic page turning
(useful for musical performers) [1], automatic accompaniment [5] etc. It can also help generating
large datasets of annotated recordings, for use in any machine learning questions applied to
music.

Various approaches have been applied to score alignment; they tend to fall in two broad
categories. First, penalization-based methods try to minimize an arbitrary function of the data;
they often use the Dynamic Time Warping algorithm (DTW) (for instance [6]). The second
category includes methods based on probabilistic models of the data, such as Hidden Markov
Models (HMMs) or more elaborate graphical models (for instance [7])." In both cases, those
methods usually seek to minimize a pre-determined similarity measure between the score and
the audio, such as log-likelihood in a graphical model with pre-trained parameters. Some works
have also attempted to learn appropriate features [%], using fully annotated samples where every
score event is associated to a timestamp. Those samples tend to be small and in short supply,
as in the absence of good enough audio-to-score alignment algorithms, recordings have to be
annotated by hand, a process that is both cumbersome and prone to error.

The approach described in this work, proposed by [9], circumvents that problem by only
requiring pairs of a score and a recording to be trained, which are available in much greater
numbers; for this reason we consider it to be weakly-supervised. In effect, we optimize the
problem for both the alignment and the data representation at the same time, using convex
optimization methods. The choice of cost function is inspired by discriminative clustering 10,

]. Discriminative methods have received some attention recently in many domains as an
alternative to generative models that often leads to more easily tractable optimization problems.
It should be noted that audio-to-score alignment can be done in real time (a.k.a. online) or
offline, using the whole signal at once; our method only applies readily to the offline problem.

The focus of this work is to develop and improve on the alignment method proposed by
[9]. In section 2, we start by describing their approach to alignment; section 3 contains our
proposed improvements on the model of [9], and section 4 describes the experimental results
we obtained. Our contributions consist in: (i) proposing a way to handle polyphonic data, (ii)
designing a more efficient rounding procedure for the convex relaxation of [9], based on an linear-
time version of the HSMM Viterbi algorithm, (iii) investigating two alternative, more versatile
optimization strategies also based on that algorithm, one through a different convex relaxation,
the other through alternating optimization, and (iv) a more thorough experimental comparison
of our approach with other techniques, including a generative method, using real-world data.

'Both HMMs and the DTW algorithm will receive further attention in this report.



2 Weakly-supervised segmentation

2.1 Description of the problem

The problem we seek to solve is that of alignment, specifically audio-to-score alignment.
Our data consists in two time series. First, we have prior information: the template (in our
case, a music score) indicates an ordered sequence of events belonging to K different classes
(music notes, chords or rests). As posterior information, we consider a d-dimensional signal
(here, sound spectrograms).”

This can be written in matrix form:

e The template is a matrix ® with dimensions £ x K, where E is the number of events.
®; ;. is 1 if event 4 belongs to class k, 0 otherwise.

e The signal is a matrix X with dimension T' x d, where T is the “duration” of the signal.

Consider, for instance, the following piece:
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This piece has ' = 7 events belonging to K = 5 classes. If we rank the notes in order from
middle G to high D (so that middle G is 0, middle A is 1, and so on), we can represent it by
the matrix in figure 1.

Figure 1: An example of template matrix ®.

Our goal is to recover correspondences between the signal and the events, that is, find
which event ¢ € {0,...,E — 1} is happening at time ¢t € {0,...,7 — 1}. We have the following
constraints: only one event is happening at any given time step (no overlaps), and exactly one
(no jumps), and the events follow one another in the sequence 0,1,...,F — 1, with event 0
starting at time 0 and event F — 1 ending at time 7.

On simple way to represent an alignment is to use the onset times of the events, that is, the
sequence tg,...,tg_1 such that event ¢ starts at time ¢;. Equivalently, we may use the duration
l; of each event. A third way introduces an “alignment path” y(t) € {0,..., E — 1}, with the
following constraints: y(0) =0, y(T'— 1) = F — 1, and y(t) < y(t + 1) < y(¢) + 1.

The authors of [9] choose to represent the alignment path in matrix form, with an alignment
matrix Y € RT*F where Y;; is 1 if at timestep ¢, event i is occurring, i.e. if y(t) = i, and 0,
otherwise. Thus Y follows the following constraints: Yoo = 1, Yr_1 g—1 = 1, and if Y; ; = 1 then
only one of Y; 11, and Y; 41,41 is 1. They denote the set of valid Y matrices as ), and its convex
hull as ).

To Y they associate an assignment matriz, Z, with dimensions T' x K, indicating to which
class the event at each timestep belongs. Note that Z is less informative than Y since we

2Thus, our approach could also be applied to alignment of speech to text, for instance.



can’t separate consecutive occurrences of the same event. Y and Z are related by the following
equation:
Z =Y. (1)

Figure 2 further illustrates this by showing what an alignment on the score above could
look like, and the associated Z matrix. Note that the template, as defined above, only includes
information about the sequence of events. In an actual music score, we also have information
about the relative length of each event. For instance, the 7 events of our score have relative
lengths (1,21, 21,1,1,1,1); the alignment proposed in figure 2 takes T = 12 and follows those
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Figure 2: The relationship between Y (left) and Z (right). We take 7" = 12 and
follow the score exactly.

In practice we consider several template-signal pairs. This doesn’t change anything to the
following discussions, as we can simply stack our various Z and X matrices. In the following
discussions, we will denote as n the number of template-signal pairs that we use, as Y}, Z;, ®;
and X; the alignment matrix, assignment matrix, template and observed features associated
with each pair, as X and Z the stacked data and assignment matrices and as Y and & the
sequence of alignment and template matrices when it makes sense.

Our goal is to recover, for each signal, the “true” alignment matrix Yy (for “ground truth”).

2.2 Mathematical formulation

2.2.1 Discriminative clustering

To that effect, we will adopt an approach inspired by discriminative clustering. Discrim-
inative models are probabilistic models often contrasted with generative models. [11, 10] A
generative model is one where the relationship between the observed features X and the latent
labels Z is based on the following graphical model:

Z — X (2)
By constrast, a discriminative approach will use the following graphical model:
X —Z7 (3)

In the context of supervised classification, an example of a generative method would be the
use of Gaussian Mixture Models (GMM), as well as the confusingly-named Linear Discriminant



Analysis (LDA). Examples of discriminative methods include linear or logistic regression and
neural networks.

Discriminative models in unsupervised learning have gained traction more recently than
generative ones. They have been shown on occasion to have better predictive performances
than generative ones, and to yield more easily tractable or adaptable cost functions, as well as
being less dependent on affine transformation of the data. [10, 12]

An example of a generative approach to alignment is the use of Hidden Semi-Markov Models
(HSMMs), which we will come back to in section 3.2.1.

2.2.2 Application to alignment

Our approach, after [9], to alignment is inspired by discriminative clustering: we will learn
K affine classifiers, represented by the pair (W, b) below, of the data X jointly with alignments
Y. More precisely, we will solve the following problem:

1 n
minimize — Z |Y;@; — X;W — 17 ||% + \|W%
L= (4)
st. Y; € Y, W e RHE p e RE

The second term is a Tikhonov regularization. || - || denotes the Frobenius norm: [|A|% =
tr(AT A). The vector b stands for “bias” and serves to re-center the data. The % factor reduces
the dependency on the size of the dataset. A slight variant of this cost function is used for
clustering by [10].

We consider this approach to be weakly-supervised, as it doesn’t rely on prior information
on the categories or the data beyond the redudancy information brought by the knowledge of
®. Specifically, the classifers W and biases b are learnt as the same time as the alignment Y,
and the learning process doesn’t involve annotated data (in the form of known signal/alignment
pairs).

This is an unconstrained minimization problem in W and b, and we can derive closed-form
expressions for their optimal values W* and b*:

W*=T2Z, (5)
1
b= (2 - Xw* Ty, (6)
where:
I = (X7 X 4+ nAly) ' XTIy, (7)
1
Iy = Iy — - 1r1f, (8)

N being the total number of data points. Il is a projection matrix: multiplying by Il on the
left side is equivalent to substracting the mean from each column.
The resulting objective function is:

F(Z)=1tr(AzZ"), (9)
where:
A=, (IT — X(nA\y+ XTHTX)—le) Iy
! (10)
= = (IIp — IpXT).
n
We also have the gradients:
VzF(Z) =2AZ (11)
Vv, F(Y) = (V7 F(2)) @] (12)



2.2.3 Optimization techniques

Both discriminative and generative models often come down to intractable or difficult opti-
mization problems. In our case, we have to minimize a quadratic function of Y over the discrete
set Y. A common strategy (used by [10] and [11]) consists in expressing the objective function
in terms of the equivalence matriz M or the normalized equivalence matriz M. If Z € RN*K,
where N is the number of data points and K is the number of classes, is an assignment matrix,
then:

M=2zz" M=27zYz)"1 2" (13)

The properties of those matrices enable the authors of [10] and [ 1] to express the cost as a
linear function; then, they use convex relaxation of the set where those matrices evolve to solve
the LP. The issue with this approach is that those two matrices evolve in a set whose convex
hull cannot be expressed in a simple way; thus approximative convex relaxations have to be
used instead. In [9], this issue is avoided by taking a convex relaxation in Y instead.

2.3 Prior information
2.3.1 Motivation

In discriminative clustering, the solution that assigns all data points to the same cluster
is often trivially optimal; more generally, degenerate solutions with overly unbalanced clusters
are a frequent risk. The opposite problem is found in generative clustering, where degenerate
solutions assign each point to its own cluster.

Various heuristical strategies are used to counter this: hard limits on the number of classes
(this doesn’t readily apply to our problem where the number of segments is fixed), minimal
cluster sizes, [10] or adding smooth regularization to the objective; for instance, [11] introduces
the entropy of cluster sizes as a penalization:

h(Y)=— ( ! YT1> (14)

17y1
where H is the usual entropy function: H(x) = — Y x;logx;. This tends to promote equal
cluster sizes.
Following [9], we will adopt a similar strategy, using the information on events’ duration

found in the music score. Indeed, as we already noted, the music score provides additional
information rather than just the template ®@; it also defines relative lengths for all events, which
induces an “expected” alignment Y, the alignment that follows the score exactly.

2.3.2 Global prior

We considered two different ways of adding this information to our data: the first one is
what [9] calls the “global” prior, which penalizes the mean differences between onsets of events
in the computed and expected alignments, by adding a term:

S|~

hglobal(y) = Z H(Y} - ?J)Lf”%“a (15)
j=1

where L; is a lower triangular matrix with only ones. This is equivalent to the “area loss”
between the two alignment matrices. It can also be interpreted as the cumulated delay between

the two alignments; denoting as (to,...,tg_1) the onset times of events following alignment Y,
and (¢, ...,t%_,) those based on alignment Y’, we have:
E-1
T2
1Y =Y LY = Y [t — 1. (16)
i=0



hglobal Teduces to an affine function on Y:
h _ly (t Y[ (diag(LT L)%, — 2,171, Y,LT|2 17
global(Y) = " Z r iag( i) gL Ly)) + 1Y ;L5 %) - (17)

This is no longer true on ) since it results from the following non-linear relation:
VY €Y, YTY = diag(YT17) (18)

where the diag operator maps a vector in RP to a diagonal matrix in RP*P,

2.3.3 Local prior

[9] also introduces a “local prior” inspired by Hidden Semi-Markov Models (HSMMs, cf
section 3.2.1). To each event i we associate an expected duration lz(] )
term:

and add the following

| Bl o
Proca(Y) = —— 3~ Z log P(t), — t;119)). (19)
7j=1 =0
where P is some probability distribution on positive reals or integers with a single real parameter.
We call this regularization “local” because it penalizes each cluster size independently.
One choice we considered for P is that of (truncated) homoscedatic Gaussians (with mean
[ and fixed variance), resulting in:

n

1 o= :
iocat(Y Ezz =t =) = LN - V) (20)

j=1 i=0 j=1

3\1—‘

This has the advantage to induce a quadratic cost; thus, our optimization problem stays
quadratic. It is used in the experiments of [9]. Another possibility that also lets us stay in a QP
setting is that of heteroscedatic Gaussians, with variance proportional to (:

n Bl (40) ) ) ? .
hiocal(Y) = Z ‘ - (lj) Z” Y Y Y Y ) 1T HQ (21)

This latter cost function is consistent with a number of properties of musical data; in par-
ticular, the sub-path of minimum cost is always the one that follows exactly the score, even if
that’s in a different tempo from the global one. Log-concavity of the distribution is a necessary
condition for this to hold.

2.4 Optimization algorithm

We cannot solve our optimization problem as is; instead we follow [9] in considering its
convex relaxation:

minimize F(Y') + 1 hgiobal(Y) + v hiocal (Y)

st.Ye)y (22)

p and v are hyperparameters that have to be set by the experimenter.
We denote the full objective function as G(Y'). Note that G is still a quadratic function.



2.4.1 Dynamic Time Warping

We can solve linear problems on ); quickly (in time O(T'E)) thanks to the Dynamic Time
Warping (DTW) algorithm. The DTW algorithm, often used in alignment problems, can mini-
mize objectives of the form tr(YjTC), where C'is a cost matrix; Cy; is the cost of being in event
i at time ¢. This is done by recursively computing the minimal cost D;; to be in event ¢ at time
t, with the following formula:

Do = Cop (23)
Dij=4o0 ift<i (24)
D11 =min{Dy_13, Dy_q1,-1} + C (25)

We keep track of previous results to reduce computation time, hence the “dynamic” qualifier.
At the end, the optimal alignment is the one that yielded the cost Dr_; p_1.

2.4.2 Frank-Wolfe method

Since ij is a convex polytope, solving linear problems on yj is the same as solving them
on its set of vertices Y. This means we can also solve linear problems on ); using DTW.
This remark prompts the use of a Frank-Wolfe algorithm (FW, a.k.a. Conditional Gradient
algorithm, CG): in this optimization method, search directions are found by minimizing a local
linear approximation of the objective function. Thus, in our case, at every iteration k, the new
search direction is found by calculating;:

Yj/(k) € arg min tr (YJ-TVyj G(Y(k))) . (26)
Yjey;

We can then pick a new point using a step size vg:

k+1 1(k k
VI = 3y (1 -y (27)
A possibility is to use the “universal” step v, = %H In our case, since the objective is a

quadratic function of Y, there is a closed-form expression of the optimal step.
In both cases, the algorithm can be shown to converge linearly towards the optimum. [13]

2.4.3 Rounding

The algorithm yields a point Y* in ) from which we may wish to recover a proper alignment
in ). This procedure can be referred to as rounding.
Various rounding schemes can be realised in time O(TE) using the DTW algorithm:

1. Minimize ||Y; — Y]*HQF, this is equivalent to maximizing tr(YjTYj*).
2. Minimize | Z — Z*||%; this is equivalent to maximizing tr(Y'jTY*@j(I)?).
3. Minimize ||Z — XW* —16*T||%; this is equivalent to maximizing tr(YjT(XW* + 1b*T)<IJ;‘.F).

The first and second procedures can be interpreted as rounding to the nearest point in,
respectively, the Y-space (i.e. ') and the Z-space. The idea to round in the Z-space was
originally proposed in [I4]. The third procedure is a minimization of a linear upper bound
of the discriminative cost F'(Y), where the minimization step relative to W and b has been
removed. It can also be interpreted as a strongly-supervised variant of our weakly-supervised
approach: once classifiers are learnt, alignment is performed. [9] reports it as giving the best
results.

We will discuss this choice in more detail in section 3.3.



3 Discussions and contributions

3.1 Handling of polyphony

So far, we have assumed that only one category of event occurred at every time step, or
in other words that events belonged to only one category. This was how the authors of [9]
conducted their experiments.

In practice, musical events typically consist in chords, that is to say, in several notes occurring
at once. We could represent every occurring chord in our data as a separate category, but this
has two important disadvantages: first, it results in an impractical number of categories. Second,
it ignores the roughly additive nature of chords: the signal corresponding to a chord is going
to look fairly similar to those of each individual note. More precisely, it is common (though
not universal) in the Music Information Retrieval literature (see for instance [15] and [16], both
dealing with music transcription) to make those assumptions: that the signal of a chord is the
sum of each component pitch’s signal (additive assumption), and that each term in that sum
has the same energy or L2 norm (equal energy assumption). This is equivalent to assuming that
each pitch corresponds to a signal and that the signals for different pitches are decorrelated.

To account for all this, we chose to allow events to be part of several categories at once. In
practice, this means that several entries in each row of ® may be non-zero. This doesn’t affect
any of the calculations.

There is a choice to be made regarding the manner in which polyphony is encoded:

1. We can set every ®;; such that note k occurs at time i to 1 (no normalization). This is
consistent with the additive and equal amplitude assumptions if the data isn’t normalized.

2. We can apply L1 normalization to the first representation, so that 1z® = 1g. This can
be thought to be more consistent with a mixture model of the sound, or with assumptions
of equal amplitude, rather than equal energy.

3. We can apply L2 normalization to the first representation, so that diag(®®”) = 1. This
eliminates weight differences between events in the cost function. Besides, if the data (X)
is normalized, it is consistent with assumptions of additivity and of equal energy.

For a concrete exemple, consider the following snippet:
/
i — ; e
ANI W | b
J I |

It would be encoded as such, with the columns corresponding to G, A, C, and E respectively:

0010
First option: 01 11
1001
[0 0 1 0
Second option: 0 % % %
1
3 0.0 3
0 0 1 O
- , 11 1
Third option: 0 5 A7
1 1
B NG

In practice, we went with the simpler first option. Both the first and third options seem to
work well experimentally with normalized data, as seen for instance on figure 3.

10



onset loss (s)
W
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0 1 1 1 L 1
0 5 10 15 20 25 30
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Figure 3: Evolution of the onset loss in seconds (see section 4.2.1) through itera-
tions of the algorithm with various encodings of polyphony, using 30 recordings of
Chopin’s Mazurka op. 17 n° 4.

3.2 A generative approach: HSMMs
3.2.1 Description of the model

An alternative to the discriminative cost function we proposed is the use of a Hidden Semi-
Markov Model (HSMM). HSMMs are an extension of HMMs relying on semi-Markov rather
than Markov processes. An overview of HSMMs can be found in [17].

A discrete-time HSMM involves an underlying Markov chain going through a sequence of
states (sg,dr) € S x N* for k = 0,..., N — 1. s is the hidden state, and dj, is the duration
of the k-th state. For the sake of simplicity, we will assume that the sequence of states is a
time-homogeneous Markov chain by itself with transition probabilities given by P € |S| x |S|
and that the durations only depend on the associated state s, with the distribution D(- | s).
Thus the Markov process follows the graphical model in figure 4.

P(-|s P(-|s
States S0 ¢l O)(91\ Cl 1)®

SN-1
D(- | so) D(- | s1) D(- | s2) D(- | sny—1)
Durations do dy do dn_1

Figure 4: The graphical model of the Markov process behind an HSMM.

The semi-Markov process in itself is defined as s} = s for t =0,...,T — 1 where:

k—1 k
Yody<t< > d (28)
j=0 Jj=0

—1

T=Y d (29)
=0

11



Thus, s’ goes through the same values as s, “staying” for dj steps on sj. Finally, the obser-
vations x; are generated at each time step t following the emission distribution M. s,

To summarize all of it in simpler terms, the process goes through a sequence of states; it
stays in a state j for a period given by D(- | 7), and then changes state following the distribution
P(-|j). At each time step, a signal x is generated following a distribution M that depends on
the current state solely.

The joint likelihood of a sequence of states, durations and observations can be written as
follows:

N-—2 N-1 T-1
P(Vk,Vt, S = s, D = dpp, Xt = 21) = [[ Pepsier [ Dsi(di) T] My (20)- (30)
k=0 k=0 t=0
In our case, we will take the states to be the events: S = {0,..., E — 1}. Since we know the

sequence of events in advance, we do not have to consider a transition distribution P; we have
s = k for all k. M is the distribution of our data features X; given each event’s pitch. The
distribution D is that of the duration of each event: d; = ;41 — t;; we can write the vector of
those durations as Y7 1p. Similarly, there is a simple relation between our alignment matrix Y
and the sequence s': s = Y, Y3, which can also be written as s’ = Ys.

We choose to modelize the observation distribution M by a multivariate Gaussian distribu-
tion with covariance Ij; the expected value of each category k is denoted as ¢x and we write
them together in matrix form as Q € RE*? We denote the category of each event i as k;.

._7.)2
For D, we have d; follow a distribution proportional to % (a discretized truncated Gaus-

i

sian distribution), where [; is the expected duration given by YTIT. Then the joint negative

log-likelihood of the signal and some alignment can be written in matrix form as:*
1 [Tt Bi—1 (d; — ;)2
HY,QX) = =3 [ llan, — (Xl +v 3 S50
j=1 | t=0 i=0 i (31)
1 & T _
= 3 [1%9,Q = X3+ I (V; V)~ (% = V) 1, 1]

J

I
—

Note that the second term is what we previously defined as hjoca. This is why we said that
our choice for hjoca1 was inspired by generative models. Another choice of distribution for d;
could be used as hjocal just as well.

Another interesting remark is that the duration penalization given by hjoca only has to be
defined on integers. We chose to have it coincide with a Gaussian distribution on reals, and
in the convex relaxation of section 2.4, we extended the quadratic function over ) so that the
gradient would be easy to compute. We will see further along this section why we might want
to pick a different extension.

3.2.2 Viterbi training of HSMMs
If we want to use the model above, we have to deal with Q). To keep our weakly-supervised
approach, we’d like to learn ) and Y together without annotations:

U ST \— —
minimize — >~ ([[¥;®;Q = X;l[} +v[|(V; V)~ (¥; = V) 11, [3)
"= (32)
s.t. Yj € Yy, Q e REX

3We essentially adopt a linear topology for our Markov chain.
4Up to multiplicative and additive constants.

12



There are two traditional ways of training HSMMs: [18] the most common one is the
Expectation-Maximization algorithm (EM), which maximizes the observation likelihood P(X).
The other possibility, called Viterbi training, optimises the joint likelihood P(X,Y’), which is
what we want to do here. It consists in alternating optimization in () and Y:

QW = (70T 7Nt zT x (33)
Y}(kﬂ) € argmin H(Y, QW) (34)
Y€l

The second step uses the so-called HSMM Viterbi algorithm to recover the optimal align-
ment.” This algorithm is a dynamic programming method akin to DTW, and an extension of the
Viterbi algorithm for HMMs. While on HMMs it runs in time O(TE), it runs in time O(ET?)
in the more general case of HSMMs.® Yet, in the case of HSMMs with log-concave duration dis-
tributions (including our pseudo-Gaussian distributions), it is possible to implement a variant
of the Viterbi algorithm that runs in time O(ET). To our knowledge, this was first proposed
in [20], as an adaptation of earlier DNA matching techniques, and has been often ignored by
later work, perhaps because it doesn’t come from the inference community. We describe it in
the next section.

3.2.3 A linear-time Viterbi algorithm for HSMMs

The Viterbi algorithm is used to find maximum-likelihood paths in HSMMs. We consider
here the problem of minimizing tr(Y7C) + L(YT1r), where L(A) = Y2 L;(A;) is a sum of
convex functions of each component. The following discussion will use the same notations as
those of DTW (section 2.4.1): C'is the cost matrix, with dimensions T' x E, and D, ; represents
the minimal cost to reach event ¢ at time £.

The observation of [20] is the following: given that the duration distribution is concave, it is
possible to predict at which point a certain subpath will become optimal, eliminating the need
for later checks. In the “regular” Viterbi algorithm, at every step, the following minimization is
performed:

t—1
s = o 7 . . . —_ / .
Dy min Dy 141+ ; Cyi+ Li(t —t') (35)

Jt’,i(s)

Because L; is a convex function, the quantity L;(t —t') — L;(t —t") (and therefore Jy ;(t) —
Jy ;(t)) is decreasing with ¢ if ' < ¢”, and there is a tipping point t* at which the path that goes
to 4 at time t” becomes more performant than that from time ' (see figure 5). If we calculate
this tipping point, we know in advance when will have to consider each path in future steps,
and no linear-time minimization is necessary. In the general case, this computation consists in
finding the sign change of an univariate monotonous function on a finite set, which can be done
in logarithmic time by bisection. In our heteroscedatic Gaussian case, we can actually compute

5More commonly referred to as segmentation or path in this context.

In general, the basic HSMM Viterbi algorithm runs in time O(NTDK), where N is the number of states,
K their maximum incoming degree, and D the maximum duration of a state. The authors of [19] reduce this to
O(NT(D + K)). Since the sequence of states is exactly known in our case, K =1 and N = E. We do not make
any assumption on D beyond the obvious D < T
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Tl’). We have for ¢/ < t":

3

t* through a closed form in constant time. Recall that L;(t —t') = (¢t

A
t''—1
Jyi(t) < Jpri(t) <= Li(t — ') — Li(t = t") < Dpr_1i-1 — Dy_1;-1+ »_ Csi
s=t’ (36)
= (" —t)2t -t —t"—2;) < I2A
1 I2A
= t< 5(t’+zt”)+li+m:t*

Thus we can define a function TIPPINGPOINT; that computes t* from A, ' and ¢”.

In practice, a queue is used to store the future optimal paths for each event. The procedure
is outlined in more detail in algorithm 1. Because only one element can be added to each queue
at every step in the main loop, the total running time is O(T'E).

3.3 Revisiting rounding

The rounding procedures described in 2.4.3 and used in [9] can be quite dissatisfying in
practice, as they do not incorporate the regularizing information brought by the priors. Un-
fortunately, it is impossible to minimize the local penalization on )Y using DTW, as, to the
contrary of the global one, it doesn’t reduce to a linear form.

However, the local penalization can be interpreted, as we said, as the duration log-likelihood
associated with a Gaussian HSMM. Thus, the Viterbi algorithm for HSMMs (described just
above) can be used to recover the optimal path. This yields a more efficient rounding procedure,
where we minimize the following objective:

[Y® — XW* — 106" 7|2 + h(Y). (37)

This can be done in time O(T'E) using algorithm 1.

Like the third procedure of section 2.4.3, this procedure can be interpreted as an upper
bound over the whole cost function, and not just the discriminative cost, that doesn’t optimize
over W and b. It can also be interpreted as a strongly-supervised segmentation that incorporates
regularizers. More precisely, it can be seen as the optimization of a certain HSMM.
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Algorithm 1 The Linear-time Viterbi algorithm: minimizing tr(Y7C) + L(YT17).
D «+— +oorxE > Dy ; is the minimal cost to reach event 7 at time ¢.
D()’() — C()’() + Lo(l)
Create an empty queue Q) for each event i. > Q) contains pairs (¢,t*) of an origin time
and a tipping point.
fort=1,...,7; —1do
Dy Yo Cso + Lo(t +1)
fori=1,...,F; —1do
Remove entries at the front of Q) if we reached the next entries’ tipping point.
while Q) isn’t empty do
Set (to,t5) to the last element of Q).
t* <= TIPPINGPOINT;(Dy—1,-1 — Dyy—1,i—1 + it Cs.i, to, t)

s=t
> TIPPINGPOINT; (A, t',t") finds the 2610 Of Li(t—t")— Li(t — t') + A.
if t* > T then > This path is never optimal.
Exit loop.
else if t* > ¢ then > This path will become optimal at some point.

Push (t,t*) at the end of Q) and exit loop.
else if t* <tj then © This path will become optimal but the one from ¢y, won't.
Remove (tg, t}) from Q.
if QU is empty then > This path is optimal right now.
Push (t,t) into Q.
Set (to,t5) to the first element of Q.
Dy« Li(t —to+ 1)+ Dyy—1,i-1 + Zizto Cs.i
Backtrack through D to recover Y.

This analogy leads us to a further variant consisting in repeating the optimization several
times, alternating computations of W* and b* and of Y to refine the result. We refer to this
as “alternating optimization”. This is very similar to so-called “Viterbi training” of an HSMM
[18], which we will describe in section 3.2.2.

We compared experimentally the three procedures in section 2.4.3, the one above and the al-
ternating optimization, and found that both procedures taking regularizers into account yielded
better results. Example results from such an experiment are shown in figure 6.

3.4 Generalized Conditional Gradient

The Generalized Conditional Gradient algorithm (GCG) is an extension of the Frank-Wolfe
method in the case where we know how to minimize exactly part of the objective. Its name
stems from the fact that Frank-Wolfe is also known as the Conditional Gradient algorithm. [13]
In the Frank-Wolfe method, new search directions are found by solving the following problem:

2'®) ¢ argmin 27V f(z®). (38)

In the setting of GCG, we consider that the objective function has the form f(z) = g(z) +
h(z), where we know how to minimize h exactly. Thus, the problem we solve to find a search
direction becomes:

') e argmin 27 Vg(z®) + h(z). (39)

Using v = l%rl as step size, the GCG algorithm has the same convergence properties as
Frank-Wolfe, [13] though it often performs better in practice.
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Figure 6: Evolution of the onset loss in seconds through iterations for various round-
ing schemes, using 100 distorted MIDI files from the Finnish Folk Tunes dataset as
data. The “alternating” method was applied with 3 successive optimization steps.
The “unrounded” data represents the value of hgioha on the original point in .

The GCG method doesn’t apply readily to our problem as described above, since we do not
know how to minimize hioca1 on the convex domain Y, but only on ). Yet, as we mentioned in
section 3.2.1, our choice of extending hjgeal Over Y as a smooth quadratic function is arbitrary.
Instead, we can choose our extension illocal to be piecewise linear, so that:

in Aiocal (V") = min Argear (V). 40
i Atocal (Y) = ity Alocal (V) (40)

ﬁlocal can be defined explicitly as the convex hull of Ajgcal, i.€. the greatest convex function
(on ?) minimizing hjocar on Y. This function is piecewise linear because ) is discrete (for an
intuition of what such a function looks like, see figure 7). ﬁlocal is an upper bound of Ay, and
coincides with it on ). Both can be considered to be natural yet arbitrary convex extensions
of the HSMM likelihood. An advantage of this second approach is that it doesn’t rely on the
choice of Gaussian distributions as a local prior. Any other log-concave distribution could be
extended over ) in the same manner, and then optimized with the method above.

By contrast, a disadvantage of this is that such an extension is very hard to compute
explicitly on all of Y. In fact, on a set as large as ), we have to renounce having an explicit form
for the objective entirely. This means, amongst other things, that we can no longer perform an
approximate line search, let alone one in closed form, and we have to use an “universal” step
size v = k—il

As far as the global penalization is concerned, its convex hull can be known explicitly, since
it is simply the extension of its linear form expression on Y:

VY € 5. hgovar (V) = tr (V] (ding(LTL,)1h, —2¥,L7L;)). (41)
We can define for convenience the following functions:

h=pu ﬁglobal + v hocal (42)
G=F+h (43)

We can then use the GCG algorithm to minimize G. This new version of our method is very
similar to the original Frank-Wolfe algorithm, except that the dynamic optimization step (26)
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Figure 7: Illustration of the convex hull approximation (in red) of the 2D quadratic
function ||z||3 (in blue). A simple 3 x 3 grid plays the role of the polytope ).

is replaced by:

Yj/(k) € al}rfgeniin [tr (YJT (Vij(Y(k))» + iL(Y)} . (44)

which we can solve in time O(T;E;) with the linear-time Viterbi algorithm.

4 Experimental discussion

4.1 Description of baseline methods

We compared our method to several other approaches to the problem of music alignment.

4.1.1 Change-point detection

Change-point detection (CPD) seeks to segment a time series in contiguous clusters. The
desired number of clusters can be known in advanced or detected by the algorithm.

Using optimal Gaussian likelihood (or equivalently, variance) as a cost function, the objective
minimized by CPD algorithms for a fixed number F of clusters is:

Fepp(Y) = [|X —Y (YY) 'Y X} (45)

Note that this can be interpreted as applying the Viterbi algorithm to a linear HSMM like the
one in section 3.2.1, but with uniform duration distributions and no redundancy informations
(each event has its own emission distribution).

A straightforward dynamic programming algorithm can solve the problem in quadratic time,
which is what we used. CPD is discussed in a more elaborate fashion in [21] and [22].

Note that CPD doesn’t make any use of the information we have access to through the
music score, i.e. the redundancy information from the template and the expected durations.

4.1.2 Alternating minimization

Recall that in section 3.3, we suggested alternating minimization as a rounding procedure
to recover alignments in ) from point in ).
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An alternative approach consists in abandoning the convex relaxation altogether, and ap-
plying alternating optimization to the original minimization problem:

N _ _
minimize — 3" ([[¥;®; = X;W = 106" [+ (¥ = V) LT I + v (¥ = V)" 1713) + AW 3
j=1
s.t.Y; €Y, W e RE p e RE
(46)

Instead of eliminating W and b to find a quadratic function of Y, we can perform alternating
linear minimizations in (W, b) and Y. Specifically, we go through the following iterations:

w® — pz*) (47)

p(k) %( 20 — XN T, (48)

O = 1, diag(@,07)" ~ 2X,WO0T — 211,007 6] 1 ding(LT L)1, 2V, L5 (19

v € arg min (V) 4+ v (VY)Y - V)T (50)
J J

where I is defined by (7). The minimization in the fourth line can be performed with the Viterbi
algorithm.
This has no convergence guarantees.

4.1.3 Viterbi training

As we have discussed, a more traditional approach to the problem would be to use a gener-
ative model. Viterbi training of an HSMM is described in section 3.2.

We can deviate from section 3.2 and include the global prior in the cost function as a linear
term, though its probabilistic interpretation isn’t obvious. Since the cost function of this model is
very different from that used in our discriminative methods, we have to set the hyperparameters
w and v differently. In practice we found that setting ;1 = 0 doesn’t worsen results significantly.

4.1.4 Testing time: applying an existing classifier

The methods described above (apart from CPD) attempt to simultaneously learn the model
and perform the alignment. If we only want to do the latter, we can easily use the Viterbi
algorithm to minimize the cost function with precomputed values of W and b. This procedure
can be used as some sort of “testing phase” for our method.

If we use the ground truth data to learn W and b, we are essentially turning back to a
strongly-supervised approach. Alternatively, we can learn classifiers from the expected alignment
(i.e. make the assumption that the score is a good enough approximation of the ground truth);
this would be equivalent to stopping alternating optimization after the first iteration.

4.2 Experimental settings

4.2.1 Performance metric

To evaluate the quality of our alignments, we use the “onset loss” metric. [9] If (¢g,...,tp—1)
are the onset times of events following alignment Y, and (¢(,...,t%_,) those from alignment
Y, this metric is defined as:

NN
SV Y) =5 > lti—tl. (51)
=0



As already noted in (16), this is similar to the global penalization:
1 n
hglobal( ﬁ Z Y Y LT”F - ZE 5 (52)

We will express onset loss in seconds rather than time steps to make our results more
relatable.

4.2.2 Data and features

Our experiments use two datasets: a collection of short, monophonic Finnish folk songs
in MIDI format, and the sheet music and a large number of recordings of Frédéric Chopin’s
Mazurkas for piano, which are polyphonic pieces. Those are described in more detail in sec-
tion 4.4.2.

To get interesting sound signals from MIDI data, we keep the approach of [9] of randomly
distorting the local tempo, and then generating sound output. The waveforms (both those gen-
erated from MIDI and original recordings) are then transformed into vector data by computing
mel-spectrograms with 40 coefficients in a rolling window with time step 0.08s.” L2 normaliza-
tion of data points was found to improve results significantly. This isn’t surprising, since our
modelization of redundancy using ® relies on the assumption that similar events occurring at
different times or in different pieces will exhibit similar features.

For all experiments, we use the “expected alignment”, i.e. the music score as our initialization
point.

4.3 Parameter tuning

There is no obvious way to set u and v. We had to perform a grid search to that purpose,
a rather slow and cumbersome process, and a clear disadvantage of the model. Fortunately,
similar results were found regardless of the data used. An example is shown in figure 8.

In general, a value of v too small will result in degenerate solutions of the kind typical of
discriminative models (with a small number of overly big clusters), while one too big will entail
that the expected alignment minimize the cost, making the model hardly informative. p appears
to be useless when applied to genuine recordings, and it can be set to zero without changing
the results much. It is more important when we use distorted MIDI data in the manner of [9],
where tempo variations can be much more discontinuous (since the local prior penalizes locally
irregular tempi).

4.4 Experiments and comparison

4.4.1 Preliminaries

We applied our method the different techniques described in section 4.1 to different pieces,
and compared the results in terms of onset loss and objective convergence.
In the graphs of figures 9 and 10, the following identifiers describe the methods:

e GCG: the GCG algorithm (section 3.4). GCG-RD denotes the point obtained after the
rounding procedure of section 3.3.

e FW: the Frank-Wolfe algorithm (section 2.4). FW and FW-RD follow the same convention
as above.

"We experimented with other values for the various numeric parametres, as well as other representations
altogether such as MFCCs, and found no significant difference in final results. We are of course limited by
processing time and memory requirements.
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Figure 8: Results (onset loss in seconds) of a grid-search tuning of the parameters
on 20 recordings of Chopin’s Mazurka 17-4. p is the y-axis, and v the y-axis. The
data was capped at 5 for greater visibility; the onset loss gets much greater when g
and v are close to 0.

e Alt: alternating optimization (section 4.1.2).

e Viterbi: Viterbi training (section 3.2.2).

e Score: the unoptimized expected alignment.

e CPD: Change-point detection (section 4.1.1).

e ClScore: using a classifier learnt from the score (section 4.1.4).

e CIGT: the same thing using ground truth data, i.e. the strongly-supervised approach.
Intuitively it should be impossible to do better than this.

The RD suffix indicates rounding of elements of ) to ) at each step.

4.4.2 Description of datasets

Corpora of well-annotated recorded music are relatively hard to come by, precisely because
we lack good audio-to-score alignment methods to generate them automatically. We mainly
used two datasets for our experiments.

The Finnish folk songs database® contains about 7000 simple monophonic tunes with length
a few seconds to one minute, in a simple matrix format that is more or less equivalent to basic
MIDI. Those tunes were originally compiled by scholars in the early 20th century, before being
translated to a digital format by the authors of [23] in 2004.

The Mazurka project’ consists in a compilation of about 3000 recordings of Chopin’s 59
Magzurkas, established by the UK’s CHARM project. For about 400 of those recordings, “reverse
conducting” annotations were manually added, which means that somebody manually marked
the onset times of every note on the score in the recording, providing us with ground truth
data for our experiments. Our experiments focussed on three Mazurkas that came with several
dozens annotated recordings, the mazurkas op. 17 n° 4, op. 24 n° 2 and op. 68 n° 3. Collectively

8 Available at http://esavelmat.jyu.fi//collection_download.html.
Shttp://www.mazurka.org.uk/.
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the Mazurkas have almost all 81 pitches of the piano, but a single one typically has around
30-40 different pitches only. Most recordings have lengths in the 2-5 minutes range.

4.4.3 Monophonic experiments

Our first experiments used the Finnish folk songs dataset, and mostly follow the experiments
in [9]. We randomly picked 100 of them, amounting to a bit less than 1 hour of MIDI data, and
applied Gaussian distortion to note durations, in the same manner as [9]. We then generated
a waveform from the symbolic data, and added Gaussian noise to it to make the data more
similar to real musical recordings. The original rhythm was used as an “expected” alignment
Y. The results are shown in figure 9.

10% - At *—e CPD - 66 —,—— 14 ————— B8 Alt 4% ClScore FW-RD  ®—® GCG-RD
¥ dGT W 8 GCG-RD e Viterbi *—e CPD - 6CG >~ Score
44 Clscore FW-RD  *— Score ¥ ClGT W

08 F*

objective value
=
5

onset loss (s)

06 "

e e

. L . . .
0 5 10 15 20 25 30 o 5 10 15 20 25 30
iterations iterations

(a) (b)

Figure 9: Optimization of various methods on 100 distorted Finnish folk songs. (a)
represents the value of the objective function G, and (b) that of the onset loss
compared to ground truth. Recall that GCG doesn’t actually optimize G, but G
instead, and that we cannot compute G explicitly.

Apart from CPD, all models were found to recover some of the information. This means that
the knowledge of the music score is genuinely helpful. Discriminative models perform about as
well as Viterbi training, but our convex relaxation doesn’t seem very useful as the simpler and
faster method of alternating optimization yields both better minimizers of the objective in )
and a smaller onset loss.

Both Ehoices of convex relaxation have similar performances, and G appears to be reasonably
close to G.

4.4.4 Polyphonic experiments

The Finnish folk tunes are not very realistic data, as the MIDI output is much simpler in
form than actual recordings, and our tempo distortion doesn’t resemble that of a real musician
interpreting a piece. We conducted a more informative experiment using recordings of Chopin’s
Mazurkas. The results are shown in figure 10.

The results are similar to those on Finnish folk songs. GCG now outperforms FW in terms
of onset loss; this appears to be due to the greater importance of the local penalization in this
setting. Since the local penalization has low rank, first order approximation of the quadratic
form does a poor job of minimizing it, whereas the piecewise linear version can be optimized
exactly. In general, discriminative methods still outperform Viterbi training; this is much clearer
on a more difficult problem like Mazurka 17-4, which has lots of rubato (local tempo variation),
than on an easy one like the very regular Mazurka 24-2. Alternating minimization, which we
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Figure 10: Optimization with various methods on 30 recordings of the mazurkas (a)
24-2 (K = 50), (b) 68-3 (K = 34), (c¢) 17-4 (K = 40) and (d) a random selection of
all Mazurkas (K = 62).

originally conceived as a rounding procedure, is much more effective than convex relaxation in
all cases.

As planned, the concavity of the Gaussian distribution leads to regular spacing between
identical consecutive events. This may or may not reflect the actual interpretation but it is
rarely very far from it. Since none of our methods incorporate a real modelization of tempo,
they react poorly to durable tempo changes such as the one in the middle of mazurka 68-3
(made even harder by a long series of similar events, see figure 11). This explains the poor
performances of all methods on that piece.

31 Q | @I ; Poco piu vivo _ _ _
U & o %‘l = — _ _
i S

Figure 11: This tempo change in Mazurka 68-3 confuses our method.
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4.4.5 Summary

Table 1 has the results for all the experiments described above.

Score CPD ClScore CIGT Viterbi Alt FW GCG

Finnish folk 097 1.04 0.37 0.34 0.57 0.40 0.46 048
Mazurka 17-4  4.07 4.17 1.55 0.14 2.92 0.15 158 1.03
Mazurka 68-3  1.77 2.85 0.75 0.16 0.64 0.27 174 1.17
Mazurka 24-2 1.20 1.87 0.57 0.07 0.22 0.07 0.41 0.25
All mazurkas 3.11 2.83 0.98 0.16 1.59 0.19 1.20 0.87

Table 1: Onset loss in seconds for various settings and methods.

5 Conclusion and perspectives

In this work, we have discussed and evaluated various improvements and elaborations on
the alignment method proposed by [9]. This weakly-supervised approach has the advantages
that it doesn’t need fully annotated data for training, and at the same time, it doesn’t rely on
pre-trained models for classification.

Our experiments have shown the original convex relaxation as well as our variant suitable for
the GCG algorithm perform acceptably on real-world polyphonic data, and widely outperform
HSMMs used in a similar fashion. From an optimization perspective, this further encourages
the use of discriminative costs for segmentation and clustering problems, and suggests that
convex relaxations of discriminative problems based on the assignment matrix Z rather than
the equivalence matrix M (cf section 2.2.3) could yield fruitful results for other problems. It
should be noted, though, that the quality of our segmentations is largely dependent on our
regularization — specifically, on what we call the “local” penalization — which in turn is based
on traits unique to musical data. Application to other problems is dependent on a appropriate
choice of regularization.

From the perspective of audio-to-score alignment, we found that our convex relaxations were
widely outperformed by a simpler alternating optimization, perhaps disappointingly. The two
methods may be combined if we use alternating optimization as our rounding procedure, though
in this specific instance we found no practical advantage in doing so. Results do validate our
choice of cost function and shows the potential of well-regularised discriminative models. Our
approach makes a number of choices for which alternatives should probably be investigated:
one possibility is to use different duration distributions for the local prior. While it does a good
job of eliminating degenerate solutions, our Gaussian prior is too strict in practice and makes
it impossible to detect large deviations from the score; a distribution with heavier tails might
perform better. Our alternative convex relaxation does aways with the need for a smooth prior
with an easy-to-compute gradient, further extending the range of choices. Another possibility
of improvement would a more sophisticated modelization of the relation between features and
templates, such as the cost function of [12], though this would make optimization harder, or
more ambitiously, a radically different choice of regularization that would incorporate some
form of tempo modelization, taking inspiration from generative models that treat the tempo as
a latent variable such as [7].
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